Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36295755

RESUMO

The cyanidation leaching method is hazardous to the environment, but it is widely applied in the gold mining process because it is effective for gold extraction. This study fabricates polymer inclusion membranes (PIMs), which have environment-friendly properties, with graphene oxide (GO) as an alternative to the cyanidation leaching method for gold extraction. Poly(vinylidenefluoride-co-hexa-fluoropropylene)-based PIMs with different GO concentrations in five membranes (i.e., M1 (0 wt.%), M2 (0.5 wt.%), M3 (1.0 wt.%), M4 (1.5 wt.%), and M5 (2.0 wt.%)) are studied for their potential to extract gold from a hydrochloric acid solution. The membranes are prepared using di-(2-ethylhexyl) phosphoric acid as the extractant and dioctyl phthalate as the plasticizer. Scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, ion exchange capacity, and water uptake are used to characterize the physical and chemical properties of the fabricated PIMs. The results show that the optimized membrane for gold extraction is M4 (1.5 wt.% GO), which yields a better performance on thermal stability, ion exchange capacity (IEC), and water uptake. M4 (1.5 wt.% GO) also exhibits a smooth and dense structure, with the maximum extraction efficiency obtained at 84.71% of extracted gold. In conclusion, PIMs can be used as an alternative for extracting gold with a better performance by the presence of 1.5 wt.% GO in membrane composition.

2.
Membranes (Basel) ; 12(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36295779

RESUMO

Heavy metal pollution has prompted researchers to establish the most effective method to tackle the impacts of heavy metals on living things and the environment, which include by applying nanoparticles. An example is the employment of multi-walled carbon nanotubes (MWCNTs) as an additive in an intermediate membrane or polymer inclusion membrane (PIM). The MWCNTs were added to enhance the properties and reinforce the transport performance of zinc (II) ion (Zn2+) removal from the source phase to the receiver phase by the PIMs. The present study constructed a membrane with a poly(vinyl chloride) (PVC)-based polymer, dioctyl phthalate (DOP) plasticiser, and bis-(2-ethylhexyl) phosphate (B2EHP) carrier incorporated with different concentrations of MWCNTs. The contact angle (CA), water uptake, ion exchange capacity (IEC), and porosity of the fabricated membranes were evaluated. The membrane was also characterised by employing scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and electrochemical impedance spectroscopy (EIS). Subsequently, the fabricated PIM (W1) and mixed matrix (MM)-PIM (W2−W5) samples were assessed under different parameters to acquire the ideal membrane composition and effectiveness. Kinetic modelling of Zn2+ removal by the fabricated PIMs under similar conditions was performed to reveal the mechanisms involved. The average removal efficiency of the membranes was >99% at different parameter conditions. Nevertheless, the W3 membrane with 1.0 wt% MWCNT immersed in a 5 mg/L initial Zn2+ concentration and 1.0 M receiver solution for seven hours at pH 2 demonstrated the highest percentage of Zn2+ removal. The experimental data were best fitted to the pseudo-first-order kinetic model (PFO) in kinetic modelling, and the permeability and flux of the W3 at optimum conditions were 0.053 m s−1 and 0.0532 mol m−2 s−1, respectively. In conclusion, the transport mechanism of Zn2+ was enhanced with the addition of the MWCNTs.

3.
Microb Pathog ; 169: 105637, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35710088

RESUMO

Melioidosis is endemic in Southeast Asia and northern Australia. The causative agent of melioidosis is a Gram-negative bacterium, Burkholderia pseudomallei. Its invasion can be fatal if melioidosis is not treated promptly. It is intrinsically resistant to a variety of antibiotics. In this paper, we present a comprehensive overview of the current trends on melioidosis cases, treatments, B. pseudomallei virulence factors, and molecular techniques to detect the bacterium from different samples. The clinical and microbial diagnosis methods of identification and detection of B. pseudomallei are commonly used for the rapid diagnosis and typing of strains, such as polymerase chain reaction or multi-locus sequence typing. The genotyping strategies and techniques have been constantly evolving to identify genomic loci linked to or associated with this human disease. More research strategies for detecting and controlling melioidosis should be encouraged and conducted to understand the current situation. In conclusion, we review existing diagnostic methodologies for melioidosis detection and provide insights on prospective diagnostic methods for the bacterium.


Assuntos
Burkholderia pseudomallei , Melioidose , Burkholderia pseudomallei/genética , Humanos , Melioidose/diagnóstico , Melioidose/microbiologia , Tipagem de Sequências Multilocus , Estudos Prospectivos , Fatores de Virulência/genética
4.
Polymers (Basel) ; 14(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35567022

RESUMO

Changes in physical properties of (H2C=C(CH3)CO2CH2CH2NH3)2PbI2Cl2 and (H2C=C(CH3)CO2CH2CH2NH3)2Pb(NO3)2Cl2 (2D) perovskite materials from iodide-based (I-AMP) and nitrate-based (N-AMP) leads were investigated at different durations (days) for various storage conditions. UV-Vis spectra of both samples showed an absorption band of around λmax 420 nm due to the transition of n to π* of ethylene (C=C) and amine (NH2). XRD perovskite peaks could be observed at approximately 25.35° (I-AMP) and 23.1° (N-AMP). However, a major shift in I-AMP and dramatic changes in the crystallite size, FHWM and crystallinity percentage highlighted the instability of the iodide-based material. In contrast, N-AMP showed superior stability with 96.76% crystallinity even at D20 under the S condition. Both materials were exposed to ammonia (NH3) gas, and a new XRD peak of ammonium lead iodide (NH4PbI3) with a red-shifted perovskite peak (101) was observed for the case of I-AMP. Based on the FWHM, crystallite size, crystallinity and lattice strain analysis, it can be concluded N-AMP's stability was maintained even after a few days of exposure to the said gases. These novel nitrate-based lead perovskite materials exhibited great potential for stable perovskite 2D materials and recorded less toxicity compared to famous lead iodide (PbI2) material.

5.
Sci Total Environ ; 799: 149457, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375867

RESUMO

Microplastics are tiny plastic particles with size below 5 mm, prevalence in marine environments and the occurrence have been reported in commercial marine fish worldwide. Microplastics' abilities to absorb various marine contaminants raised considerable concern on their role as a vector to spread harmful pollutants to the alienated environment. This study focussed on the occurrence of microplastics in gastrointestinal tract (GIT) and gills of 158 fishes across 16 species from two locations in Malaysia coastal waters. Microplastics were detected approximately 86% in the GIT and 92% in the gills of examined fish. High incident of microplastics was detected in fishes from the area that is close to an urban area with average microplastics incident reaching up to 9.88 plastics items/individuals. Meanwhile, only 5.17 microplastics per individual were recorded in fishes from a less urbanised area. Isolated microplastics comprised 80.2% of fibres, 17.7% of fragments and the remaining was derived from filaments (3.1%). Infrared and Raman spectroscopy analysis of selected microplastics revealed the chemical composition of microplastics which comprised of polyethene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), polystyrene (PS) and polyethylene terephthalates (PET). FESEM images indicate, different surface characteristics of microplastics as a result of environmental exposure. Further, elemental analysis using EDX for green PE fragments showed the uneven distribution of chromium (Cr) and iron (Fe) on the surface, suggesting the adherence of heavy metals on the surface of microplastics. Overall findings indicate the widespread distribution of microplastics in commercial marine fishes from Malaysia waters and could potentially lead to human exposure through fish consumption.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Peixes , Trato Gastrointestinal , Brânquias/química , Humanos , Malásia , Plásticos , Poluentes Químicos da Água/análise
6.
Biomolecules ; 11(2)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578851

RESUMO

As the most recognizable natural secondary carotenoid astaxanthin producer, the green microalga Haematococcus pluvialis cultivation is performed via a two-stage process. The first is dedicated to biomass accumulation under growth-favoring conditions (green stage), and the second stage is for astaxanthin evolution under various stress conditions (red stage). This mini-review discusses the further improvement made on astaxanthin production by providing an overview of recent works on H. pluvialis, including the valuable ideas for bioprocess optimization on cell growth, and the current stress-exerting strategies for astaxanthin pigment production. The effects of nutrient constituents, especially nitrogen and carbon sources, and illumination intensity are emphasized during the green stage. On the other hand, the significance of the nitrogen depletion strategy and other exogenous factors comprising salinity, illumination, and temperature are considered for the astaxanthin inducement during the red stage. In short, any factor that interferes with the cellular processes that limit the growth or photosynthesis in the green stage could trigger the encystment process and astaxanthin formation during the red stage. This review provides an insight regarding the parameters involved in bioprocess optimization for high-value astaxanthin biosynthesis from H. pluvialis.


Assuntos
Clorofíceas , Biomassa , Carbono/química , Técnicas de Cultura de Células , Meios de Cultura , Concentração de Íons de Hidrogênio , Metais , Microalgas , Nitrogênio/química , Fotossíntese , Espécies Reativas de Oxigênio , Salinidade , Temperatura , Xantofilas/química
7.
Chemosphere ; 260: 127649, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32688323

RESUMO

Post-digestion treatment is an important step during sample preparation to facilitate the removal of undigested materials for better detection of ingested microplastics. Sieving, density separation with zinc chloride solution (ZnCl2), and oil extraction protocol (OEP) have been introduced in separating microplastics from sediments. The clean-up methods are rarely highlighted in previous studies, especially in the separation of microplastics from marine biota. Thus, this study proposed and compared the suitability of three techniques, which can reduce the number of undigested particles from the digestate of GIT and gills. Our result has shown excellent removal of non-plastics materials and reduces the coloration of filter paper in all treated samples. Both sieving and density separation achieved optimum post-digestion efficiencies of >95% for both GIT and gill samples, which former showed no effect on polymer integrity. Additionally, high recovery rate was obtained for the larger size microplastics (>500 µm) with approximately 97.7% (GIT) and 95.7% (gill), respectively. Exposure to the ZnCl2 solution led to a significant loss of smaller size PET and changed the absorption spectrums of all tested polymers. Particle morphology determined by SEM revealed such exposure eroded the surface of PET fragments and elemental analysis has shown detectable peaks of zinc and chlorine appeared. Low microplastics recoveries were achieved through OPE and residue of oil was observed from the infrared spectrum of all tested polymer. The findings demonstrate sieving with size fractioning can provide exceptional removal of non-plastics materials from the digestate of GIT and gill samples.


Assuntos
Trato Gastrointestinal/química , Microplásticos/análise , Poluentes Químicos da Água/análise , Animais , Biota , Monitoramento Ambiental/métodos , Peixes , Brânquias/química , Plásticos/análise , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...